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Motivation and introduction (I)

The recent discovery of gravitational waves calls for new analytical
techniques to study the two-body problem.

We need waveform templates to extract the signal: the effective one-body
(EOB) [Buonanno, Damour] and the self-force approach allow to combine
analytical and numerical techniques for the evolution of compact binaries

Today: focus on the inspiral phase, where we can model compact objects as
point particles in the spirit of effective field theory [Goldberger,Rothstein]
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Motivation and introduction (II)

Idea: use particle field theory tools (→ scattering amplitudes)

Real world EFT of point particles

Compact objects of mass M Point particles of mass M

Spin effects of magnitude a Spinning particles of classical spin a

Tidal effects, GR curvature corrections Higher-dimensional operators

Absorption effects Non-unitary absorption dofs

Why amplitudes? (adapted to scattering orbits. . . bound orbits? Stay tuned!)

Amplitudes are gauge-invariant, univer-
sal objects which encode in a compact
and analytic way the perturbative scat-
tering dynamics for point particles in a
QFT.
New perspective on GR!
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Motivation and introduction (III)

Analytic waveform templates are going to be necessary for extreme mass
ratio inspirals, which are going to be detected by the LISA mission

As theoretical physicists, we need to work hard to be ready for 2035!
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KMOC formalism for the two-body problem (I)

Two-body scattering in GR: Consider as initial state two massive particles
separated by an impact parameter bµ [Kosower,Maybee,O’Connell=KMOC]

|ψin⟩ =
∫

dΦ (p1, p2)ψ1(p1)ψ2(p2)e
i(b·p1)/ℏ |p1p2⟩

with some wavefunctions ψ1,ψ2 localized on classical trajectories.

The dynamics of the evolution is determined by the action

S = − 1

16πGN

∫
d4x

√−gR +
2∑

j=1

1

2

∫
d4x

√−g
(
gµν∂µϕj∂νϕj −m2

j ϕ
2
j

)
+ SGF

where we perform the perturbative expansion

gµν = ηµν + κhµν , κ =
√
32πGN → Post-Minkowskian expansion inGN .
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KMOC formalism for the two-body problem (II)

We can compute classical observables O with expectation values

⟨ψin|S†OS|ψin⟩
∣∣∣
ℏ→0

= 2ℜi⟨ψin|OT |ψin⟩
∣∣∣
ℏ→0

+ ⟨ψin|T †OT |ψin⟩
∣∣∣
ℏ→0

which the S-matrix S = 1 + iT gives both contributions linear in the
amplitude T (and its conjugate T †) and quadratic ones T †T (unitarity cuts).

Connection with the “classical” on-shell reduction of the in-in approach in
the (+)/(−) basis [Britto, RG, Jehu]
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Classical limit from quantum field theory?

How do we take the classical limit for the scattering of point particles?

Massive particles: use minimum-uncertainty wavefunctions localized
on the classical trajectory [KMOC]

ψ (p) = Nm−1 exp

[
− p · u
ℏℓc/ℓ2w

]
rest frame→ N ′ exp

(
− p2

2m2ℓ2c/ℓ
2
w

)
where pµ is the momentum, ℓc,j = ℏ/mj is the Compton wavelength, ℓw the
intrinsic spread of the wavefunction. If bµ is the impact parameter we require,

ℓc,j ≪ ℓw ≪ b =
√
−b2 .

Massless particles: use coherent states! [Cristofoli,RG,Kosower,O’Connell]
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Classical limit of scattering amplitudes

Conservative 4-pt amplitude M4(p1, p2; p
′
1, p

′
2): in the classical limit ℏ → 0

pµ1 := pµA + ℏ
q̄µ

2
, (p′1)

µ :=pµA − ℏ
q̄µ

2
, s= (pA + pB)

2 ,

pµ2 := pµB − ℏ
q̄µ

2
, (p′2)

µ :=pµB + ℏ
q̄µ

2
, t=− ℏ2 |⃗q̄|2 ,

where pA, pB are the classical momenta and q is the momentum transfer.

Generalization for the 4 +M-pt amplitude M4+M(p1, p2; p
′
1, p

′
2, k1, . . . , kM)

qµ1,2 = pµ1,2 − (p′1,2)
µ = ℏq̄µ1,2 , kµ

j = ℏk̄µ
j , j = 1, . . . ,M .

Main lesson: only wavevectors q̄µ1,2,k̄j are classical, need to restore ℏ!
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Waveforms from KMOC formalism (I)

How is the waveform derived from scattering amplitudes?

The on-shell expectation value of the time-domain waveform relevant for the
inspiral phase is [Cristofoli,RG,Kosower,O’Connell]

〈
ψin|S†hµν(x)S|ψin

〉
=

1

ℏ 1
2

2ℜ
∑
σ=±

∫
dΦ(k) ε∗(σ)µ (k)ε∗(σ)ν (k)j̃(b; kσ)e−ik·x/ℏ

where at leading Post-Minkowskian order only the 5-pt amplitude is relevant

j̃(b; kσ1) ≡
∫
dΦ(p′1p

′
2p1p2)ψ

∗(p′1, p
′
2)ψ(p1, p2)e

−ib·q̄1

︸ ︷︷ ︸
5-pt amplitudeM5
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Waveforms from KMOC formalism (II)

Assuming that the measurement distance is much larger than the impact
parameter, so that there is a unique and well-defined direction,

Gret (x) = iθ
(
x0
) ∫

dΦ(k)
(
e−ik·x − e ik·x

)
=

1

4π|x⃗ |δ
(
x0 − |x⃗ |

)

we get for the strain at x0 > 0 [Cristofoli,RG,Kosower,O’Connell]

h(x) =
κ

8π|x⃗ |

∫ ∞

0

dω

2π

[
j̃(b; k−)e−iωu + j̃(b; k+)∗e iωu

]
,

j̃(b; kh) =
1

(2π)2

∫ [ ∏
i=1,2

d4q̄iδ (2pi · q̄i )
]

︸ ︷︷ ︸
Measure dµ

e i(q̄1·b1+q̄2·b2) M(0)
5,cl

(
q̄1, q̄2, k̄

h
)︸ ︷︷ ︸

∝δ4(q1+q2−k)

,

where u = x0 − |x⃗ | is the retarded time.

We can now start to compute scattering waveforms!
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Tree-level waveform for Schwarzschild black holes (I)

Use on-shell tools:

Simplify the phase space integration
of the 5-pt amplitude using S-matrix
analyticity and unitarity (factorization
into 3-pt and 4-pt amplitudes)

zv

−q21 = 0

−q21 = 0

−q22 = 0

−q22 = 0

SW×

Result: new compact representation of the tree-level waveform!
[Kovacs,Thorne; Jakobsen,Mogull,Plefka,Steinhoff; De Angelis,RG,Novichkov]

h(0)(x) =
G2
Nm1m2

|x⃗ |
√
−b2

1

w̄2
1 w̄

2
2

√
1 + T 2

2

(
γ +

√(
1 + T 2

1

) (
1 + T 2

2

)
+ T1T2

)
×
(
3w̄1 + 2γ

(
2T1T2w̄1 − T 2

2 w̄2 + w̄2

)
−
(
2γ2 − 1

)
w̄1

γ2 − 1
f 21,2

−
4γT2w̄2f1 + 2

(
2γ2 − 1

) [
T1

(
1 + T 2

2

)
w̄2f1 + T2(T1T2w̄1 + w̄2)f2

]√
γ2 − 1

f1,2

+ 4
(
1 + T 2

2

)
w̄2f1f2 − 4γ

(
1 + T 2

2

)
w̄2

(
f 21 + f 22

)
+ 2

(
2γ2 − 1

) (
1 + 2T 2

2

)
w̄2f1f2

)
+ (1 ↔ 2)
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Tree-level waveform for Schwarzschild black holes (II)

The tree-level scattering waveform in the equatorial plane looks like

Most of the energy is released during the closest approach (∼ periastron)!

Very different compared to (quasi)-periodic bound waveforms for compact
binaries. . . is it possible to establish a connection?
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From scattering to bound dynamics

Classical scattering amplitudes describe hyperbolic encounters. If we define

E :=
E −m1 −m2

µ
, p2∞ = −p̃2∞ =

E 2 − (m1 +m2)
2

2m1m2
,

we have E , p2∞ > 0 for scattering orbits and E , p2∞ < 0 for bound orbits.

Two powerful methods to extract bound state physics from amplitudes:
1) Extract perturbatively the classical potential (∼ Hamiltonian) valid for arbitrary
orbits [Niell,Rothstein;Cheung,Rothstein,Solon]
2) Gauge invariant map between scattering and bound observables [Kälin,Porto]

O>(E > 0, J, cX , a1, a2,m1,m2) → O<(E < 0, J, cX , a1, a2,m1,m2)

which can be derived from the Bethe-Salpeter eq. [Adamo,RG; Adamo,RG,Ilderton].
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The bound state equation in quantum mechanics (I)

How can we describe bound states of point particles? Start with the probe
limit in a linearized Schwarzschild background[

ℏ2∇2 + |p|2 + 2ℏ|p|ζ
r

]
Ψ̄(x) = 0 , ζ :=

GNmB

ℏ
(2E 2 −m2

A)√
E 2 −m2

A

,

which can be mapped into the (solvable) Coulomb potential [Kabat,Ortiz].

We are familiar to the eigenvalue problem

Ĥ
∣∣Ψ̄〉 = E

∣∣Ψ̄〉 , Ĥ = ℏ2∇2 + |p|2 + V , V (r) ∝ GN

r
,

which can be solved exactly (at all orders in the coupling GN)

E > mA ↔ scattering plane wave Ψ̄p ∝ e ip
>·x⃗ ↔ continuous spectrumEp

E < mA ↔ normalizable wavefunction Ψ̄n ∝ e−En|x⃗| ↔ discrete spectrumEn

where > (resp. <) stands for scattering orbits (resp. bound orbits).

Does a relation exist between scattering and bound wavefunctions?
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The bound state equation in quantum mechanics (II)

We find that the scattering and bound wavefunction [Messiah, Gottfried]

Ψ̄>
p (x) = eπζ/2 Γ(1− iζ) 1F1

(
iζ; 1;

i(|p|r − p · r)
ℏ

)
e−ip·x/ℏ ,

Ψ̄<
nℓm(x) = e−iEnt/ℏ R<

nℓ(r)Yℓm(θ, ϕ) , Quantization: iζ = n ,

have a simple relation in partial wave basis [Adamo, RG, Ilderton; Gottfried]

Ψ̄<
nℓm(x ,

√
1− y2) = Resζ=−in

[
Ψ̄>

ℓm(x ,
√
y2 − 1 → +i

√
1− y2)

]
.

with a single branch cut prescription in y = E/mA [Adamo, RG].

Useful reformulation in terms of p∞ =
√
y2 − 1 and p̃∞ =

√
1− y2

Ψ̄<
nℓm(x , p̃∞) = Resζ=−in

[
Ψ̄>

ℓm(x , p∞ = +i p̃∞)

]
The residue comes from the the bound state pole (∼ Γ(1− iζ)) in the
amplitude Ψ̄>

p : can we simplify the map?
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The bound state equation in quantum mechanics (III)

In perturbation theory, the bound state energy pole is generated by the
iteration of the potential V + VGV + · · ·+ V (GV )n:

so in some sense only V should be relevant!

The natural generalization of the previous picture to the non-relativistic
(Newtonian) two-body problem is given by the ”ladder approximation”

We can write it as an amplitude recursion relation

which is nothing else that the (quantum) Bethe-Salpeter equation!
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The bound state equation in quantum field theory

The Bethe-Salpeter equation is a recursion relation for 4-pt amplitudes,
which generate the bound energy poles via the iteration of a two-massive
particle irreducible kernel (2MPI) K

Bethe- Salpeter
equation

M4(p1, p2; p
′
1, p

′
2) = K(p1, p2; p

′
1, p

′
2)

+

∫
d̂4s1 K(p1, p2; s1, s2)∆(s1, s2)M4(s1, s2; p

′
1, p

′
2) ,

where ∆(s1, s2) is the two-body propagator.

What is the classical limit of this recursion relation?
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The classical Bethe-Salpeter equation

We obtain the classical Bethe-Salpeter equation from quotienting diagrams
by symmetrization over internal graviton exchanges: [Adamo, RG]

Mcl
4,(m+1)(pA, pB , q)

=

{
Kcl(pA, pB , q) if m = 0

1
m+1

∫
d̂4l Kcl(pA, pB , l)Gcl(pA, pB , l)Mcl

4,(m)(pA, pB , q − l) if m ≥ 1
.

where the two-body propagator is replaced by its on-shell version

Gcl(pA, pB , l) = δ̂(2l · pA)δ̂(2l · pB) ,

and (m) is the number of classical two-massive particle irreducible diagrams.
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Exponentiation of the classical kernel: an exact solution

Going to impact parameter space (i.e. to the partial wave basis)

f̃ (b) ≡
∫

d̂4qδ̂ (2pA · q) δ̂ (2pB · q) e i(q·b)/ℏf (q) ,

the classical BSE becomes

M̃cl
4,(m+1)(pA, pB , b) =

{
K̃cl(pA, pB , b) if m = 0

1
m+1 K̃cl(pA, pB , b)M̃cl

4,(m)(pA, pB , b) if m ≥ 1
,

which means that the final solution exponentiates exactly [Adamo,RG]

M̃cl
4 (pA, pB , b) = eK̃cl(pA,pB ,b) − 1 .

Natural generalization for spinning particles!

The analytic structure (poles, etc.) in momentum space arise completely from

iMcl
4 (pA, pB ; q⊥) =

4
√

(pA · pB)2 −m2
Am

2
B

ℏ2

∫
d2b e−iq̄⊥·b

(
eK̃cl(pA,pB ,b) − 1

)
.
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An example: classical kernel for spinless particles at 2PM

We can consider for example the classical kernel up to 2 PM

K̃cl,>(pA, pB , x⊥) =
i

ℏ

[
− 2GN log(µIR|x⊥|)mAmB

2y2 − 1√
y2 − 1

+
3π

4
G 2
NmAmB(mA +mB)

5y2 − 1√
y2 − 1

1

|x⊥|

]
,

which encodes the conservative dynamics of two spinless particles.

Note that the motion is restricted to a plane and completely determined by
the conserved quantities (E , L)!

E :=
E −mA −mB

µ
, L = p∞(E ,mA,mB)|x⊥| , y =

E 2 −m2
A −m2

B

2mAmB
,
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The Hamilton-Jacobi action from amplitudes (I)

Since E > 0 for scattering orbits and E < 0 for bound orbits, how do we
perform an analytic continuation?

Natural connection of the kernel with the scattering Hamilton-Jacobi action

K̃>
cl (pA, pB ; x⊥) =

i

ℏ
I> (E , L) , I>r (E , L) =

∮
C>

dr pr (r , E , L) + Lπ ,

where pr is the radial momentum and C> is the contour of integration for
scattering orbits. This is the “amplitude-action” relation! [Bern et al.;
Damgaard,Plante,Vanhove; Kol,O’Connell,Telem; Adamo,RG]
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The Hamilton-Jacobi action from amplitudes (II)

There is a remarkable analytic continuation between scattering and bound
planar orbits [Kälin,Porto; Adamo, RG, Ilderton]∫

C>
r

= 2

∫ ∞

rm(p∞,L)

,

∫
C<
r

= 2

∫ r+(p̃∞,L)

r−(p̃∞,L)

,

r−(p̃∞, L)
E<0
= rm(−i p̃∞, L) , r+(p̃∞, L)

E<0
= rm(i p̃∞, L) ,

so that (pr depends on p2∞) [Di Vecchia, Heissenberg, Russo, Veneziano]

I<r (p̃∞, L) = I>r (i p̃∞, L) + I>r (−i p̃∞, L) .

In the Hamilton-Jacobi picture we can easily compute observables

Scattering angle: χ = −∂I
>
r

∂L
, Periastron advance: ∆Φ = −∂I

<
r

∂L
.

This picture generalizes for aligned-spin particles L⃗//a⃗1, a⃗2 [Kälin,Porto], but
also for (precessing) generic Kerr orbits [RG, Shi]. How about radiation?
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Classical Bethe-Salpeter recursion with radiative effects (I)

How can the BSE be generalized in the presence of radiation? Consider the
5-pt amplitude recursion with the emission of a positive energy graviton

and apply the symmetrization procedure [Adamo, RG, Ilderton]

A similar recursion holds for the emission of N gravitons.

Can we find an exact solution from the resummation? [Adamo, RG, Ilderton]
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Classical Bethe-Salpeter recursion with radiative effects (II)

The conjectural classical S-matrix is [Cristofoli,RG,Moynihan,O’Connell,Ross,
Sergola,White; Britto,RG,Jehu; DiVecchia,Heissenberg,Russo,Veneziano]

S̃cl
∣∣∣
Ek1

,...,EkN
>0

∼ eK̃
cl(pA,pB ;b1,b2)e

∑
σ

∫
dΦ(k)K̃cl

5,R(pA,pB ;b1,b2,k
σ)a†σ(k)+h.c. ,

where a coherent state of gravitons represent the gravitational wave and b1,b2
are the impact parameters related to the momentum transfers qj = pj − p′j .

All scattering and bound observables for the two-body problem can derived
from a gauge-invariant representation with 2MPI kernels K̃cl and K̃cl

5,R!

Open problem: can we understand the analytic continuation of the waveform?
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PN expansion and time-domain multipoles (I)

Following the linearized Schwarzschild case, we propose [Adamo,RG,Ilderton]

h<dyn(u, n̂; p̃∞, L) = h>dyn(u, n̂; p∞ = +i p̃∞, L) , E < 0 .

How can this be verified?

Use the Post-Newtonian expansion: the waveform in the center-of-mass frame
is related to the multipole expansion [Bini, Damour, Geralico] in time domain

h>
(
u =

b

p∞c
ũ>, n̂

)
=

4GN

c4

(
W>

N +
1

c
W>

0.5PN +
1

c2
W>

1PN + . . .

)
,

where the retarded time u needs to be rescaled to obtain the 1/c expansion.

But PN multipoles can be computed
independently with the quasi-Keplerian
parametrization for hyperbolic and
elliptic orbits! [Damour,Deruelle]
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PN expansion and time-domain multipoles (II)

The scattering and bound (relative) trajectory is x⃗ = r(cos(ϕ), sin(ϕ), 0)

r< = a<(1− e<r cos(u)) , r> = a>(e>r cosh(v)− 1) ,

n<t = u− e<t sin(u) +O (1/c) , ϕ< = 2k< tan−1

(√
e<ϕ + 1

1− e<ϕ
tan
(u
2

))
+O (1/c) ,

n>t = e>t sinh(v)− v +O (1/c) , ϕ> = 2k> tan−1

(√
e>ϕ + 1

e>ϕ − 1
tanh

(v
2

))
+O (1/c) ,

where, analytically continuing in E up to 1PN, [Damour,Deruelle]

n> → −in< , e>t → e<t , e>r → e<r , e>ϕ → e<ϕ , v → iu , a> → −a< , k> → k< .

For the hyperbolic case, to make contact with PM expansion, solve Kepler’s
equation as an asymptotic expansion at large j to get v(t)

ñ>t =
1

jp∞

[
e>t sinh(v)− v +O (1/c)

]
, ñ>N =

n>N
jp∞

=
p∞c

b
,

which gives the relative time-trajectory x⃗(v(t))!

Riccardo Gonzo (EDI) Gravitational bound waveforms from amplitudes ITMP, 13 March 2024 27 / 33



PN expansion and time-domain multipoles (II)

The scattering and bound (relative) trajectory is x⃗ = r(cos(ϕ), sin(ϕ), 0)

r< = a<(1− e<r cos(u)) , r> = a>(e>r cosh(v)− 1) ,

n<t = u− e<t sin(u) +O (1/c) , ϕ< = 2k< tan−1

(√
e<ϕ + 1

1− e<ϕ
tan
(u
2

))
+O (1/c) ,

n>t = e>t sinh(v)− v +O (1/c) , ϕ> = 2k> tan−1

(√
e>ϕ + 1

e>ϕ − 1
tanh

(v
2

))
+O (1/c) ,

where, analytically continuing in E up to 1PN, [Damour,Deruelle]

n> → −in< , e>t → e<t , e>r → e<r , e>ϕ → e<ϕ , v → iu , a> → −a< , k> → k< .

For the hyperbolic case, to make contact with PM expansion, solve Kepler’s
equation as an asymptotic expansion at large j to get v(t)
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PN expansion and time-domain multipoles (III)

For example, at the Newtonian quadrupole order we now evaluate

W>
N (u) =

1

2!
STFij

d2

dt2
(
µx i (t)x j(t)

) ∣∣∣∣∣
t=u

= − mAmBp∞

4j [1 + (ũ>)2]3/2

[ (
(ũ>)2 + 3

)
cos(2ϕ)

+
(
1 + (ũ>)2

)
+ 2

(
(ũ>)3 + 2ũ>

)
sin(2ϕ)

]
which matches the PM tree-level waveform expansion!

In general we find a B2B map between radiative multipoles for hyperbolic
and elliptic orbits up to 1PN [Adamo, RG, Ilderton; Junker, Schäfer]

W<(u, p̃∞)
∣∣∣
1PN

= W>(u, p∞ = +i p̃∞)
∣∣∣
1PN

, E < 0

which means that our map is independently verified!
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(ũ>)2 + 3

)
cos(2ϕ)

+
(
1 + (ũ>)2
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Tree-level dynamical waveform for bound orbits

Using the new B2B map for the waveform, [Adamo,RG,Ilderton]

h<dyn

(
ũ<

LE

mAmB p̃2∞c2
, n̂

)
=

4GN

c4

(
W<dyn

N +
1

c
W<dyn

0.5PN +
1

c2
W<dyn

1PN + . . .

)
,

recovers the PN multipoles W<dyn computed on the elliptic trajectory.

We can compare the scattering and bound waveforms in the com frame

Why is the bound waveform not periodic in the time u?
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From scattering to bound waveforms via resummation

The analytical continuation of the waveform computed for eccentric orbits
requires a resummation in the eccentricity to recover the bound waveform
periodicity in the time u [Adamo,RG,Ilderton]

n<t = u− e<t sin(u) +O (1/c) , n<t = u− e<t sin(u) +O (1/c) .

Need to resum perturbative contributions! [WIP with Del Duca, Sasank]
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Summary table of the boundary to bound dictionary

For aligned-spin binaries where the motion remains on the equatorial plane
we find a conjectural dictionary [Kälin,Porto;Saketh,Vines,Steinhoff,
Buonanno;Cho,Kälin,Porto;Adamo,RG; Heissenberg;Adamo,RG,Ilderton]

Bound observable Scattering observable

∆Φ(p̃∞, L, a, cX ) χ(−i p̃∞, L, a, cX ) + χ(+i p̃∞, L, a, cX )

∆E<
rad(p̃∞, L, a, cX ) ∆E>

rad(−i p̃∞, L, a, cX ) + ∆E>
rad(+i p̃∞, L, a, cX )

∆J<rad(p̃∞, L, a, cX ) ∆J>rad(−i p̃∞, L, a, cX ) + ∆J>rad(+i p̃∞, L, a, cX )

which is valid at least up to 3PM (G 3
N) order for the scattering angle

∆χ/periastron advance ∆Φ and for the fluxes ∆Erad,∆Jrad.

New waveform map (up to 1PN and tree-level)[Adamo,RG,Ilderton]

h<dyn(u; p̃∞, L, a, cX ) = h>dyn(u; +i p̃∞, L, a, cX )

in agreement with the prescription for the orbital elements [Damour,Deruelle]

Need to study tail effects appearing at higher orders! [Cho,Kälin,Porto]
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Summary and future directions

We extend the KMOC formalism to study the scattering waveform relevant
for the classical two-body problem using EFT and amplitude techniques

We showed how the analitic properties of the S-matrix allow to derive a
universal expression of the leading order time-domain waveform in terms of
the 3-pt and 4-pt Compton amplitude, bypassing completely the integration
of the 5-pt amplitude

We discussed a generalization of the boundary to bound dictionary for various
observables, including the post-Minkowskian waveform, matching the result
with the calculation of the radiative multipoles in post-Newtonian limit and
making contact with the analytic continuation of the orbital elements

We emphasize the need to resum perturbative contributions for the bound
waveform to make contact with phenomenological applications

Future directions: extend the scattering-to-bound map to include tail effects
for the waveform and other observables, explore the resummation of PM
contributions, extend the scattering-to-bound map to generic spins, . . .
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